S140 IP₃ receptor Alexander et al

IP₃ receptor

Overview: The inositol 1,4,5-trisphosphate receptors (IP₃R) are ligand-gated Ca^{2+} release channels on intracellular Ca^{2+} store sites (such as the endoplasmic reticulum). They are responsible for the mobilization of intracellular Ca^{2+} stores and play an important role in intracellular Ca^{2+} signalling in a wide variety of cell types. Three different gene products (types I–III) have been isolated, which assemble as large tetrameric structures. IP₃Rs are closely associated with certain proteins: calmodulin and FKBP (and calcineurin via FKBP). They are phosphorylated by PKA, PKC, PKG and CaMKII.

Nomenclature	IP₃R1	IP₃R2	IP₃R3
Other names	INSP3R1	INSP3R2	INSP3R3
Ensembl ID	ENSG00000150995	ENSG00000123104	ENSG00000096433
Endogenous	Ins(1,4,5)P ₃ (nM– μ M), cytosolic Ca ²⁺	Ins(1,4,5)P ₃ (nM– μ M), cytosolic	Ins(1,4,5)P ₃ (nM– μ M), cytosolic
activators	(<750 μM), cytosolic ATP (<mm)< td=""><td>Ca^{2+} (nM)</td><td>Ca^{2+} (nM)</td></mm)<>	Ca^{2+} (nM)	Ca^{2+} (nM)
Pharmacological activators	InsP ₃ analogues including Ins(2,4,5)P ₃ , adenophostin A (nM)	InsP ₃ analogues including Ins(2,4,5)P ₃ , adenophostin A (nM)	-
Antagonists	Xestospongin C (μ M), caffeine (m M), phosphatidylinositol 4,5-bisphosphate (μ M), heparin (μ g m L ⁻¹), decavanadate (μ M), calmodulin at high cytosolic Ca ²⁺	Heparin (μg·mL ⁻¹), decavanadate (μM)	Heparin (μg·mL ⁻¹), decavanadate (μM)
Functional characteristics	Ca ²⁺ : $(P_{Ba}/P_K \sim 6)$ single-channel conductance: ~70 pS (50 mM Ca ²⁺)	Ca ²⁺ : single-channel conductance: ~70 pS (50 mM Ca ²⁺), ~390 pS (220 mM Cs ⁺)	Ca ²⁺ : single-channel conductance ~88 pS (55 mM Ba ²⁺)

The absence of a modulator of a particular isoform of receptor indicates that the action of that modulator has not been determined, not that it is without effect.

Abbreviation: FKBP, FK506-binding protein

Further Reading

Balla T (2009). Regulation of Ca²⁺ entry by inositol lipids in mammalian cells by multiple mechanisms. *Cell Calcium* **45**: 527–534. Berridge MJ, Lipp P, Bootman MD (2000). The versatility and universality of calcium signalling. *Nat Rev Mol Cell Biol* 1: 11–21.

Bolton TB (2006). Calcium events in smooth muscles and their interstitial cells: physiological roles of sparks. J Physiol 570: 5-11.

Bootman MD, Berridge MJ, Roderick HL (2002). Calcium signalling: more messengers, more channels, more complexity. *Curr Biol* 12: R563–R565. Bosanac I, Michikawa T, Mikoshiba K, Ikura M (2004). Structural insights into the regulatory mechanism of IP₃ receptor. *Biochim Biophys Acta* 1742: 89–102.

Bultynck G, Sienaert I, Parys JB, Callewaert G, De Smedt H, Boens N *et al.* (2003). Pharmacology of inositol trisphosphate receptors. *Pflugers Arch* **445**: 629–642.

Choe CU, Ehrlich BE (2006) The inositol 1,4,5-triphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad team work. Sci STKE 2006 (363): re15.

Foskett JK, White C, Cheung KH, Mak DO (2007). Inositol trisphosphate receptor Ca²⁺ release channels. Physiol Rev 87: 593-658.

Mikoshiba K (2007). IP₃ receptor/Ca²⁺ channel from discovery to new signaling concepts. J Neurochem 102: 1426–1446.

Mikoshiba K (2007). The IP₃ receptor/Ca²⁺ channel and its cellular function. *Biochem Soc Symp* 74: 9–22.

Nahorski SR (2006). Pharmacology of intracellular signalling pathways. Br J Pharmacol 147 (Suppl. 1): S38-S45.

Patel S, Joseph SK, Thomas AP (1999). Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25: 247-264.

Patterson RL, Boehning D, Snyder SH (2004). Inositol 1,4,5-triphosphate receptors as signal integrators. Annu Rev Biochem 73: 437–465.

Taylor CW, Traynor D (1995). Calcium and inositol trisphosphate receptors. J Membr Biol 145: 109–118.

Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. *Physiol Rev* **85**: 201–279. Vermassen E, Parys JB, Mauger J-P (2004). Subcellular distribution of the inositol 1,4,5-triphosphate receptors: functional relevance and molecular determinants. *Biol Cell* **96**: 3–17.